20 research outputs found

    Hypergraph Learning with Line Expansion

    Full text link
    Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyperedges equally and proposes a new hypergraph formulation named the \emph{line expansion (LE)} for hypergraphs learning. The new expansion bijectively induces a homogeneous structure from the hypergraph by treating vertex-hyperedge pairs as "line nodes". By reducing the hypergraph to a simple graph, the proposed \emph{line expansion} makes existing graph learning algorithms compatible with the higher-order structure and has been proven as a unifying framework for various hypergraph expansions. We evaluate the proposed line expansion on five hypergraph datasets, the results show that our method beats SOTA baselines by a significant margin

    Deep learning for the internet of things

    Get PDF
    The proliferation of IoT devices heralds the emergence of intelligent embedded ecosystems that can collectively learn and that interact with humans in a human-like fashion. Recent advances in deep learning revolutionized related fields, such as vision and speech recognition, but the existing techniques remain far from efficient for resource-constrained embedded systems. This dissertation pioneers a broad research agenda on Deep Learning for IoT. By bridging state-of-the-art IoT and deep learning concepts, I hope to enable a future sensor-rich world that is smarter, more dependable, and more friendly, drawing on foundations borrowed from areas as diverse as sensing, embedded systems, machine learning, data mining, and real-time computing. Collectively, this dissertation addresses five research questions related to architecture, performance, predictability and implementation. First, are current deep neural networks fundamentally well-suited for learning from time-series data collected from physical processes, characteristic to IoT applications? If not, what architectural solutions and foundational building blocks are needed? Second, how to reduce the resource consumption of deep learning models such that they can be efficiently deployed on IoT devices or edge servers? Third, how to minimize the human cost of employing deep learning (namely, the cost of data labeling in IoT applications)? Fourth, how to predict uncertainty in deep learning outputs? Finally, how to design deep learning services that meet responsiveness and quality needed for IoT systems? This dissertation elaborates on these core problems and their emerging solutions to help lay a foundation for building IoT systems enriched with effective, efficient, and reliable deep learning models

    FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices

    Full text link
    Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by 48%48\% to 78%78\% and energy consumption by 37%37\% to 69%69\% compared with the state-of-the-art compression algorithms.Comment: Accepted by SenSys '1

    An Experimental Evaluation of Datacenter Workloads On Low-Power Embedded Micro Servers

    Get PDF
    This paper presents a comprehensive evaluation of an ultra-low power cluster, built upon the Intel Edison based micro servers. The improved performance and high energy efficiency of micro servers have driven both academia and industry to explore the possibility of replacing conventional brawny servers with a larger swarm of embedded micro servers. Existing attempts mostly focus on mobile-class micro servers, whose capacities are similar to mobile phones. We, on the other hand, target on sensor-class micro servers, which are originally intended for uses in wearable technologies, sensor networks, and Internet-of-Things. Although sensor-class micro servers have much less capacity, they are touted for minimal power consumption (< 1 Watt), which opens new possibilities of achieving higher energy efficiency in datacenter workloads. Our systematic evaluation of the Edison cluster and comparisons to conventional brawny clusters involve careful workload choosing and laborious parameter tuning, which ensures maximum server utilization and thus fair comparisons. Results show that the Edison cluster achieves up to 3.5× improvement on work-done-per-joule for web service applications and data-intensive MapReduce jobs. In terms of scalability, the Edison cluster scales linearly on the throughput of web service workloads, and also shows satisfactory scalability for MapReduce workloads despite coordination overhead.This research was supported in part by NSF grant 13-20209.Ope
    corecore